Autophagy is Impaired in the Tibialis Anterior of Dystrophin Null Mice

نویسندگان

  • Pietro Spitali
  • Paolo Grumati
  • Monika Hiller
  • Martina Chrisam
  • Annemieke Aartsma-Rus
  • Paolo Bonaldo
چکیده

Background Duchenne muscular dystrophy is a lethal, progressive, muscle-wasting disease caused by mutations in the DMD gene. Structural remodelling processes are responsible for muscle atrophy and replacement of myofibers by fibrotic and adipose tissues. Molecular interventions modulating catabolic pathways, such as the ubiquitin-proteasome and the autophagy-lysosome systems, are under development for Duchenne and other muscular dystrophies. The Akt signaling cascade is one of the main pathways involved in protein synthesis and autophagy repression and is known to be up-regulated in dystrophin null mdx mice. Results We report that autophagy is triggered by fasting in the tibialis anterior muscle of control mice but not in mdx mice. Mdx mice show persistent Akt activation upon fasting and failure to increase the expression of FoxO3 regulated autophagy and atrophy genes, such as Bnip3 and Atrogin1. We also provide evidence that autophagy is differentially regulated in mdx tibialis anterior and diaphragm muscles. Conclusions Our data support the concept that autophagy is impaired in the tibialis anterior muscle of mdx mice and that the regulation of autophagy is muscle type dependent. Differences between muscle groups should be considered during the pre-clinical development of therapeutic strategies addressing muscle metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autophagy is Impaired in the Tibialis Anterior of Dystrophin Null Mice Œ PLOS Currents Muscular Dystrophy

Background Duchenne muscular dystrophy is a lethal, progressive, muscle-wasting disease caused by mutations in the DMD gene. Structural remodelling processes are responsible for muscle atrophy and replacement of myofibers by fibrotic and adipose tissues. Molecular interventions modulating catabolic pathways, such as the ubiquitin-proteasome and the autophagy-lysosome systems, are under developm...

متن کامل

The FVB Background Does Not Dramatically Alter the Dystrophic Phenotype of Mdx Mice

The mdx mouse is the most frequently used animal model for Duchenne muscular dystrophy (DMD), a fatal muscle disease caused by the loss of dystrophin. Mdx mice are naturally occurring dystrophin-null mice on the C57BL/10 (BL10) background. We crossed black mdx to the white FVB background and generated mdx/FVB mice. Compared to that of age- and sex-matched FVB mice, mdx/FVB mice showed character...

متن کامل

α1-Syntrophin–deficient skeletal muscle exhibits hypertrophy and aberrant formation of neuromuscular junctions during regeneration

Alpha1-syntrophin is a member of the family of dystrophin-associated proteins; it has been shown to recruit neuronal nitric oxide synthase and the water channel aquaporin-4 to the sarcolemma by its PSD-95/SAP-90, Discs-large, ZO-1 homologous domain. To examine the role of alpha1-syntrophin in muscle regeneration, we injected cardiotoxin into the tibialis anterior muscles of alpha1-syntrophin-nu...

متن کامل

Systemic administration of IGF-I enhances oxidative status and reduces contraction-induced injury in skeletal muscles of mdx dystrophic mice.

The absence of dystrophin and resultant disruption of the dystrophin glycoprotein complex renders skeletal muscles of dystrophic patients and dystrophic mdx mice susceptible to contraction-induced injury. Strategies to reduce contraction-induced injury are of critical importance, because this mode of damage contributes to the etiology of myofiber breakdown in the dystrophic pathology. Transgeni...

متن کامل

Tranilast administration reduces fibrosis and improves fatigue resistance in muscles of mdx dystrophic mice

BACKGROUND Duchenne muscular dystrophy (DMD) is a severe and progressive muscle-wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilising protein dystrophin. Dystrophic muscle fibres are susceptible to injury and degeneration, and impaired muscle regeneration is associated with fibrotic deposition that limits the efficacy of potential pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013